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A model for nearly parallel vortex filaments

In a 3D homogeneous incompressible fluid a vortex filament is a a vortex
tube with infinitesimal cross section: the vorticity is a singular measure
supported along a curve in R3.

Klein-Majda-Damodaran 95: for N vortex filaments nearly parallel to e3
parametrized by

(xi(t,0), (¢, ), 0),
of circulation T, the evolution of W;(t, o) = x;(t,0) + iyj(t,0) is
modeled by the 1-D Schrodinger system
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In the case of exact parallel filaments, W;(t,0) = X;(t), we get the
evolution of point vortex system

=0,1<j<N.
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Some results on the point vortex system dynamics

@ [; > 0 global existence using conservation laws,

o N=2, global existence since | Xi(t) — Xx(t)| is conserved,
(X1(t), Xo(t)) rotate or translate,

@ N=3 explicit collapse for certain configurations: shrinking turning
triangle, Aref 79,

@ N=3 vortex points placed at the vertices of an equilateral triangle
rotate or translate,

@ N=3 vortex placed at the ends and the middle of a segment, [; =T,
rotate or translate,

@ vortex points placed at the N > 4 vertices of a regular polygon,
I[; =T, rotate,

@ also the vertices of regular polygons, with I'; =T, together with the
center of the polygon form a relative equilibrium configuration,

@ Kelvin's conjecture 1878: the polygon configuration is stable iff
N <7, Novikov 75, Kurakin-Yudovich 02.

.



Results on the nearly parallel vortex filaments

On perturbations of exact parallel filaments, W;(t, o) = X;(t) + u;(t,0):

@ Klein-Majda-Damodaran 95:
N = 2, the linearized system is stable if ['; /T2 > 0 and unstable if
/> < 0. Numerical computations on the perturbations suggest
global existence in the first case and collision in the second.

o Kenig-Ponce-Vega 03:
VN local existence for any (X;(0)) and small H! perturbations
(uj(0)), existence time 2 |log(X||u;j(0)|lm2)|.
N = 2 global existence for any (X;(0)), [; =T > 0.
N = 3 global existence for (X;(0)) equilateral triangle, [; =T > 0.

The global existence proofs are based on
1Xi(t) — Xi(t)| =d,V1<j#k<N

which insures the conservation of the energy £(t)
2 W (t,0)|? W (t,0)|?
% [10,9j(t,0) dor+ % [ —In (LGl + (Lol —1) do

The solutions satisfy 3 < %W <2
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Results on the nearly parallel vortex filaments

Theorem (B-M 11)

N = 4 global existence for (X;(0)) vertices of a square centered at 0,

j=T>0and (Vi 4+ V¥3)(0,0) = (V2 + V,4)(0,0) =0 Vo.

N = 4 local existence for (X;(0)) vertices of a square, ['; =T >0,
—1

existence time > min{&£(0)~+X[|4;(0)]| »*, £(0)~3} with

£(0) < Zlu;(0)I3:-

The solutions satisfy % < %# < %.

@ the rhombus shape are conserved since (—W3, —W,, —Wq, —W5) is
also solution,

o for global 3 the inertia centrum satisfies Y~ W;(t,0) = > Xj(t) =0,
@ VT there are perturbations on [0, T], with £(0) < 1 ~ X||u;(0)[|%,,
@ |X;(t) — Xk(t)| conserved, but not the same.
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Results on the nearly parallel vortex filaments

Let (Xj(t)) be the vertices of a rotating regular polygon of radius 1 (with
or without its center). We consider dilation-rotation type perturbations
that preserve the polygonal shape Vt, o,

Wj(t.0) = X(£)0(t,0).

Theorem 2 (B-M 11)
o If ®(0) — 1 is small in H! then we have global existence and

|W;(t,0) =W (t,0)] — |(¢, 0) )Iol—mox(t)

A GEA0] j(t,0

|<i v

small

o If £(0) = 5 [10-®(0)]* + & [ (|#(0 I2T1(f)lnl<l>(( ))I‘)
3 W(t, V(t,o
then we have global existence and 3 < W <

1 then W;(t, o)
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Results on the nearly parallel vortex filaments

o Gross-Pitaevskii type dynamics for the perturbation ¢

®
i0;® + 020 + w

@(1 —|®?) =0,

with w € R™* the rotating speed of the point vortices,
@ conservation of the energy

&)= 3 [10:00F +5 [ (90)F - 1=mjo(e)).

@ the energy space contains small rotation type perturbations and grey
solitons (finite energy travelling waves of G-P),

@ existence of travelling waves,
@ in progress: collisions,

o for shift type perturbations V;(t, o) = X;(t) + u(t, o), linear
Schrodinger dynamics.
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Proof of Theorem 2

Energy £(t) small enough implies ||| (t)|? — 1]|,~ < 1.

The function f(x) = x — 1 — log x is positive and convexe, and vanishes
only at x = 1. If 300 such that [(t, 0)| > /3 then

0(t0)] > [0(t.00)| + | [7, 2:0(2.x)de| > /3 — \ZE@()o — ol
and |®(t,0)| > \[ sur | = [og — 50015“),00 + 5001£(t)]' Finally,

£(t) > f( >||—m0015(t)f<9)

contradiction for £(t) small enough.
Since 3(x —1)2 < x—1—1Inx < 10(x — 1)? on [3, 3] we have:

[|®(£)]> = 1] . < i implies the comparaison of the energies:
Eep(t) = 3[10-0(t)[[7 + FIS(2)* — 1|7 < £(t) < 5Eer(2).
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Proof of Theorem 2: resolution in 1 + H*!

Similar arguments for Gross-Pitaevskii in 1 + H! (Béthuel-Saut 99,
B-Vega 08) : We first solve locally the Schrodinger-type equation
satisfied by u(t) = ®(t) — 1.

Since ®(0) — 1 is small in H, Lemma 2 and Gagliardo-Niremberg imply
€ = £(0) small. Then, by Lemma 1, the quotient W will remain
uniformly bounded.

The existence time will then depend on the H! norm of u(t). The H*
norm stays bounded in time by the energy, and the L? norm satisfies

8t/|u(t)|2 _sw/MQ_ 11+ u(t)P)a(e)

_ g, [Q- 14 u®)P)u()
- J“’/ 1+ u(t)? < [wl1=@(8) lliellu(t)lli2 < w]2VElu(t)]le2,

so ||u(t)||2 < t. By re-iterating the local in time argument we get the
global existence.
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Proof of Theorem 2: resolution in the energy space

Similar arguments for Gross-Pitaevskii in the energy space (Zhidkov 87,
Gérard 06) : We solve locally in time by a fixed point argument for the
operator

_ i(t— 7)32 &% o(0)+w(r) ( | aitd? 2)
Alw wf T o) ()] 1—1e79%®(0) + w(T)]?), on
SUPo<t<T ||W( e <e

By Lemma 1, |®(0)| > ?

On the other hand, since the symbol of e

|77 ®(0) — @(0) | < C(1+74)[|,(0)]]12 < C(1 FrVE
By taking €, T small with respect to &, will stay

itd: _1is *'fﬁ -1
, 7% ¢(o>+w(r)|
uniformly bounded.

We obtain [|A(w)(t)||g < C(€)t(C +V/E), and we deduce the existence
of a local solution for €, T small with respect to £.

By re-iterating the local in time argument we get the global existence.
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Proof of Theorem 1: local existence K-P-V

For a a perturbation uj (o) = V;(0,0) — X;(0) small in H* 3T* €]0, ]
maximal time such that on [0, T*[xR

21X5(8) ~ Xel0)] < [V5(t,0) ~ Wilt,0)] < 21X5(8) — Xe(2)]

so for T < T* the fixed point operator can be bounded by
(Ao o, 11,11y < Ellujoll e + C(IXul) T E|ujll oo g0, 71, 1)
For T small enough we obtain on [0, T] a solution (u;) such that
Zlujll oo o, 73,01 < 2211 (0) |-

The solution can be extended -although the H! norm might grow- on

[0, T*] with | log(X||uj(0)]|42)| < T*. For showing the global existence it
is enough to get, if T* is supposed finite, the contradiction

3

2X(T7) = X(TH) < [W;(T7, 0) = Wi(T, 0)] < %XJ(T*) = X(T7)].
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Proof of Theorem 1: towards global existence K-P-V

The following quantities are conserved

H = Z/mw (t,0) deZ/ ('wfk”))da,
A=3 [ (e - (o) ao
7= [ (Wae.) = 1Xu(0)) dor

Z/ (||ka : ) ao

Since —In(x) + (x — 1) > 3(x — 1)? for x € [2, 2], on [0, T*] we have

Let

Jkt

> —1
[ X (2)]

E(t) =H +I(t

2
+ D 110:9(0)]7-
j

[2
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Proof of Theorem 1: towards global existence K-P-V

By Gagliardo-Niremberg, on [0, T*],

- e VrOlE) _ o

-1 < <
Lo [ Xk ()]

‘ |W1k t U)‘2
| Xk (t)

so if £(t) stays small enough on [0, T*] then |Wj(t,o)] is close enough
to | Xj(t)| such that

2IX(T) = X (T%)] < (T, 0) ~ V(T )| < 2IX(T*) = X(T*),

which is the contradiction that implies the global existence.

In the (K-P-V) cases, |Xj(t)] = d so £(t) = % is conserved, and global
existence is obtained for small £(0).

Actually, in the cases of Theorem 2, £(t) = £(®(t)) is conserved and the
global existence in 1 + H! can be obtained also this way.
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Proof of Theorem 1

Control of £(t) :

E(t) = —H + T A+ = (||ul(t)+U3(t)||Lz+||u2()+u4(t)||%z)~

~ E(t) conserved and implies global existence for rhombus type
perturbations,

~~ for general perturbations

()] < [€(0)]

+t2 sup E(7)|3(Z)|wi(0)]|iz + t sup |E()]?),
T€[0,t] T€[0,t]

so T* 2 min 1 L5
VE@O)EE|5(0),2 £
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